A pan-grass transcriptome reveals patterns of cellular divergence in crops – Nature

0
53


  • Woodhouse, M. R. & Hufford, M. B. Parallelism and convergence in post-domestication adaptation in cereal grasses. Philos. Trans. R. Soc. B 374, 20180245 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Rich-Griffin, C. et al. Single-cell transcriptomics: a high-resolution avenue for plant functional genomics. Trends Plant Sci. 25, 186–197 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marioni, J. C. & Arendt, D. How single-cell genomics is changing evolutionary and developmental biology. Annu. Rev. Cell Dev. Biol. 33, 537–553 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shafer, M. E. R. Cross-species analysis of single-cell transcriptomic data. Front. Cell Dev. Biol. 7, 175 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kajala, K. et al. Innovation, conservation, and repurposing of gene function in root cell type development. Cell 184, 3333–3348.e19 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swigonova, Z. et al. On the tetraploid origin of the maize genome. Comp. Funct. Genomics 5, 281–284 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swigonova, Z. Close split of sorghum and maize genome progenitors. Genome Res. 14, 1916–1923 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kozlova, L. V., Nazipova, A. R., Gorshkov, O. V., Petrova, A. A. & Gorshkova, T. A. Elongating maize root: zone-specific combinations of polysaccharides from type I and type II primary cell walls. Sci. Rep. 10, 10956 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, W. et al. The mucilage proteome of maize (Zea mays L.) primary roots. J. Proteome Res. 9, 2968–2976 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schittenhelm, S. & Schroetter, S. Comparison of drought tolerance of maize, sweet sorghum and sorghum–sudangrass hybrids. J. Agron. Crop Sci. 200, 46–53 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Differentially regulated orthologs in sorghum and the subgenomes of maize. Plant Cell 29, 1938–1951 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, Z. et al. Shared genetic control of root system architecture between Zea mays and Sorghum bicolor. Plant Physiol. 182, 977–991 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McKain, M. R. et al. Ancestry of the two subgenomes of maize. Preprint at BioRxiv https://doi.org/10.1101/352351 (2018).

  • Schnable, J. C., Springer, N. M. & Freeling, M. Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc. Natl Acad. Sci. USA 108, 4069–4074 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bawa, G., Liu, Z., Yu, X., Qin, A. & Sun, X. Single-cell RNA sequencing for plant research: insights and possible benefits. Int. J. Mol. Sci. 23, 4497 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farmer, A., Thibivilliers, S., Ryu, K. H., Schiefelbein, J. & Libault, M. Single-nucleus RNA and ATAC sequencing reveals the impact of chromatin accessibility on gene expression in Arabidopsis roots at the single-cell level. Mol. Plant 14, 372–383 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Long, Y. et al. FlsnRNA-seq: protoplasting-free full-length single-nucleus RNA profiling in plants. Genome Biol. 22, 66 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marand, A. P., Chen, Z., Gallavotti, A. & Schmitz, R. J. A cis-regulatory atlas in maize at single-cell resolution. Cell 184, 3041–3055.e21 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ortiz-Ramírez, C. et al. Ground tissue circuitry regulates organ complexity in maize and Setaria. Science 374, 1247–1252 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, J. et al. Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat. Biotechnol. 38, 737–746 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ray F. Evert. in Esau’s Plant Anatomy, Meristems, Cells, and Tissues of the Plant Body: their Structure, Function, and Development 3rd edn 99 (Wiley, 2006).

  • Sorenson, R. S., Deshotel, M. J., Johnson, K., Adler, F. R. & Sieburth, L. E. Arabidopsis mRNA decay landscape arises from specialized RNA decay substrates, decapping-mediated feedback, and redundancy. Proc. Natl Acad. Sci. USA 115, E1485–E1494 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lotfollahi, M., Wolf, F. A. & Theis, F. J. scGen predicts single-cell perturbation responses. Nat. Methods 16, 715–721 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferrari, C., Manosalva Pérez, N. & Vandepoele, K. MINI-EX: integrative inference of single-cell gene regulatory networks in plants. Mol. Plant 15, 1807–1824 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Donner, T. J., Sherr, I. & Scarpella, E. Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves. Development 136, 3235–3246 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, S. et al. RppM, encoding a typical CC-NBS-LRR protein, confers resistance to southern corn rust in maize. Front. Plant Sci. 13, 951318 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ingram, G. C., Magnard, J. L., Vergne, P., Dumas, C. & Rogowsky, P. M. ZmOCL1, an HDGL2 family homeobox gene, is expressed in the outer cell layer throughout maize development. Plant Mol. Biol. 40, 343–354 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z., Tang, J., Srivastava, R., Bassham, D. C. & Howell, S. H. The transcription factor bZIP60 links the unfolded protein response to the heat stress response in maize. Plant Cell 32, 3559–3575 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, Z. et al. MRG1/2 histone methylation readers and HD2C histone deacetylase associate in repression of the florigen gene FT to set a proper flowering time in response to day-length changes. New Phytol. 227, 1453–1466 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grover, C. E. et al. Homoeolog expression bias and expression level dominance in allopolyploids. New Phytol. 196, 966–971 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lynch, M. & Force, A. The probability of duplicate gene preservation by subfunctionalization. Genetics 154, 459–473 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaudhary, B. et al. Reciprocal silencing, transcriptional bias and functional divergence of homeologs in polyploid cotton (Gossypium). Genetics 182, 503–517 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hughes, T. E., Langdale, J. A. & Kelly, S. The impact of widespread regulatory neofunctionalization on homeolog gene evolution following whole-genome duplication in maize. Genome Res. 24, 1348–1355 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, M., Zhang, B., Lisch, D. & Ma, J. Patterns and consequences of subgenome differentiation provide insights into the nature of paleopolyploidy in plants. Plant Cell 29, 2974–2994 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, L. et al. Co-expression network analysis of duplicate genes in maize (Zea mays L.) reveals no subgenome bias. BMC Genomics 17, 1–16 (2016).

    Article 

    Google Scholar
     

  • Birchler, J. A. & Veitia, R. A. Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proc. Natl Acad. Sci. USA 109, 14746–14753 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muyle, A., Marais, G. A. B., Bačovský, V., Hobza, R. & Lenormand, T. Dosage compensation evolution in plants: theories, controversies and mechanisms. Philos. Trans. R. Soc. B 377, 20210222 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Walsh, J. R., Woodhouse, M. R., Andorf, C. M. & Sen, T. Z. Tissue-specific gene expression and protein abundance patterns are associated with fractionation bias in maize. BMC Plant Biol. 20, 4 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renny-Byfield, S., Rodgers-Melnick, E. & Ross-Ibarra, J. Gene fractionation and function in the ancient subgenomes of maize. Mol. Biol. Evol. 34, 1825–1832 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, X. et al. Single-cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery. Dev. Cell 56, 557–568.e6 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rastogi, S. & Liberles, D. A. Subfunctionalization of duplicated genes as a transition state to neofunctionalization. BMC Evol. Biol. 5, 28 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J., Shah, M., Ballouz, S., Crow, M. & Gillis, J. CoCoCoNet: conserved and comparative co-expression across a diverse set of species. Nucleic Acids Res. 48, W566–W571 (2021).

    Article 

    Google Scholar
     

  • Van Deynze, A. et al. Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS Biol. 16, e2006352 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galloway, A. F., Knox, P. & Krause, K. Sticky mucilages and exudates of plants: putative microenvironmental design elements with biotechnological value. New Phytol. 225, 1461–1469 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Werker, E. & Kislev, M. Mucilage on the root surface and root Hairs of sorghum: Heterogeneity in structure, manner of production and site of accumulation. Ann. Bot. 42, 809–816 (1978).

    Article 

    Google Scholar
     

  • Voiniciuc, C., Guenl, M., Schmidt, M. H.-W. & Usadel, B. Highly branched xylan made by IRX14 and MUCI21 links mucilage to Arabidopsis seeds. Plant Physiol. 169, 2481–2495 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, B. et al. Genome-wide selection and genetic improvement during modern maize breeding. Nat. Genet. 52, 565–571 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Arendt, D. The evolution of cell types in animals: emerging principles from molecular studies. Nat. Rev. Genet. 9, 868–882 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Genome alignment spanning major poaceae lineages reveals heterogeneous evolutionary rates and alters inferred dates for key evolutionary events. Mol. Plant 8, 885–898 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Efroni, I., Ip, P.-L., Nawy, T., Mello, A. & Birnbaum, K. D. Quantification of cell identity from single-cell gene expression profiles. Genome Biol. 16, 9 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 e21 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raju, S. K. K., Ledford, S. M. & Niederhuth, C. E. DNA methylation signatures of duplicate gene evolution in angiosperms. Plant Physiol. kiad220 (2023).

  • Hernández-Coronado, M. et al. Plant glutamate receptors mediate a bet-hedging strategy between regeneration and defense. Dev. Cell 57, 451–465.e6 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Yanai, I. et al. Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics 21, 650–659 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crow, M., Paul, A., Ballouz, S., Huang, Z. J. & Gillis, J. Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor. Nat. Commun. 9, 884 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fischer, S., Crow, M., Harris, B. D. & Gillis, J. Scaling up reproducible research for single-cell transcriptomics using MetaNeighbor. Nat. Protoc. 16, 4031–4067 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanley, J. A. & McNeil, B. J. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148, 839–843 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crow, M., Suresh, H., Lee, J. & Gillis, J. Coexpression reveals conserved gene programs that co-vary with cell type across kingdoms. Nucleic Acids Res. 50, 4302–4314 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, T., Guillotin, B., Rahni, R., Birnbaum, K. & Wagner, D. A rapid and sensitive multiplex, whole mount RNA fluorescence in situ hybridization and immunohistochemistry protocol. Preprint at bioRxiv https://doi.org/10.1101/2023.03.09.531900 (2023).

  • Jackson, D., Veit, B. & Hake, S. Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120, 405–413 (1994).

    Article 
    CAS 

    Google Scholar
     



  • Source link