Home Science A well-oxygenated eastern tropical Pacific during the warm Miocene – Nature

A well-oxygenated eastern tropical Pacific during the warm Miocene – Nature

0


  • Eyring, V. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) Ch. 3 (Cambridge Univ. Press, 2021).

  • Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamamoto, A. et al. Global deep ocean oxygenation by enhanced ventilation in the Southern Ocean under long‐term global warming. Glob. Biogeochem. Cycles 29, 1801–1815 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fu, W., Primeau, F., Keith Moore, J., Lindsay, K. & Randerson, J. T. Reversal of increasing tropical ocean hypoxia trends with sustained climate warming. Glob. Biogeochem. Cycles 32, 551–564 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Frölicher, T. L. et al. Contrasting upper and deep ocean oxygen response to protracted global warming. Glob. Biogeochem. Cycles 34, e2020GB006601 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Deutsch, C., Brix, H., Ito, T., Frenzel, H. & Thompson, L. Climate-forced variability of ocean hypoxia. Science 333, 336–339 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Deutsch, C. et al. Centennial changes in North Pacific anoxia linked to tropical trade winds. Science 345, 665–668 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stramma, L. & Schmidtko, S. Tropical deoxygenation sites revisited to investigate oxygen and nutrient trends. Ocean Sci. 17, 833–847 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Karstensen, J., Stramma, L. & Visbeck, M. Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Prog. Oceanogr. 77, 331–350 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Steinthorsdottir, M., Jardine, P. E. & Rember, W. C. Near‐future pCO2 during the hot Miocene Climatic Optimum. Paleoceanogr. Paleoclimatol. 36, e2020PA003900 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Lu, Z., Jenkyns, H. C. & Rickaby, R. E. M. Iodine to calcium ratios in marine carbonate as a paleo-redox proxy during oceanic anoxic events. Geology 38, 1107–1110 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ren, H., Sigman, D. M., Thunell, R. C. & Prokopenko, M. G. Nitrogen isotopic composition of planktonic foraminifera from the modern ocean and recent sediments. Limnol. Oceanogr. 57, 1011–1024 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lu, W. et al. Refining the planktic foraminiferal I/Ca proxy: results from the Southeast Atlantic Ocean. Geochim. Cosmochim. Acta 287, 318–327 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hardisty, D. S. et al. Limited iodate reduction in shipboard seawater incubations from the Eastern Tropical North Pacific oxygen deficient zone. Earth Planet. Sci. Lett. 554, 116676 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rue, E. L., Smith, G. J., Cutter, G. A. & Bruland, K. W. The response of trace element redox couples to suboxic conditions in the water column. Deep Sea Res. I Oceanogr. Res. Pap. 44, 113–134 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chance, R., Baker, A. R., Carpenter, L. & Jickells, T. D. The distribution of iodide at the sea surface. Environ. Sci. Process. Impacts 16, 1841–1859 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kast, E. R. et al. Nitrogen isotope evidence for expanded ocean suboxia in the early Cenozoic. Science 364, 386–389 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Auderset, A. et al. Enhanced ocean oxygenation during Cenozoic warm periods. Nature 609, 77–82 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smart, S. M. et al. Ground-truthing the planktic foraminifer-bound nitrogen isotope paleo-proxy in the Sargasso Sea. Geochim. Cosmochim. Acta 235, 463–482 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhou, X., Hess, A. V., Bu, K., Sagawa, T. & Rosenthal, Y. Simultaneous determination of I/Ca and other elemental ratios in foraminifera using sector field ICP-MS. Geochem. Geophys. Geosyst. 23, e2022GC010660 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Jickells, T. D., Boyd, S. S. & Knap, A. H. Iodine cycling in the Sargasso Sea and the Bermuda inshore waters. Mar. Chem. 24, 61–82 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Moriyasu, R., Evans, N., Bolster, K. M., Hardisty, D. S. & Moffett, J. W. The distribution and redox speciation of iodine in the eastern tropical North Pacific Ocean. Glob. Biogeochem. Cycles 34, e2019GB006302 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Boscolo-Galazzo, F. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148–1152 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sigman, D. M. et al. Coupled nitrogen and oxygen isotope measurements of nitrate along the eastern North Pacific margin. Glob. Biogeochem. Cycles 19, GB4022 (2005).

    Article 
    ADS 

    Google Scholar
     

  • O’Dea, A. et al. Formation of the Isthmus of Panama. Sci. Adv. 2, e1600883 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • García, H. E. & Gordon, L. I. Oxygen solubility in seawater: better fitting equations. Limnol. Oceanogr. 37, 1307–1312 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Yan, Q. et al. Large shift of the Pacific Walker Circulation across the Cenozoic. Natl Sci. Rev. 8, nwaa101 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vecchi, G. A. et al. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441, 73–76 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nathan, S. A. & Leckie, R. M. Early history of the Western Pacific Warm Pool during the middle to late Miocene (~13.2–5.8 Ma): role of sea-level change and implications for equatorial circulation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 274, 140–159 (2009).

    Article 

    Google Scholar
     

  • Tian, J., Ma, W., Lyle, M. W. & Shackford, J. K. Synchronous mid-Miocene upper and deep oceanic δ13C changes in the east equatorial Pacific linked to ocean cooling and ice sheet expansion. Earth Planet. Sci. Lett. 406, 72–80 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Altabet, M. A. & Francois, R. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Glob. Biogeochem. Cycles 8, 103–116 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cortese, G., Gersonde, R., Hillenbrand, C.-D. & Kuhn, G. Opal sedimentation shifts in the World Ocean over the last 15 Myr. Earth Planet. Sci. Lett. 224, 509–527 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lyle, M. & Baldauf, J. Biogenic sediment regimes in the Neogene equatorial Pacific, IODP Site U1338: burial, production, and diatom community. Palaeogeogr. Palaeoclimatol. Palaeoecol. 433, 106–128 (2015).

    Article 

    Google Scholar
     

  • Holbourn, A. et al. Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling. Geology 42, 19–22 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kochhann, K. G. D., Holbourn, A., Kuhnt, W. & Xu, J. Eastern equatorial Pacific benthic foraminiferal distribution and deep water temperature changes during the early to middle Miocene. Mar. Micropaleontol. 133, 28–39 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Wu, M. et al. A very likely weakening of Pacific Walker Circulation in constrained near-future projections. Nat. Commun. 12, 6502 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schlitzer, R. Ocean Data View. https://odv.awi.de/ (2021).

  • Olsen, A. et al. The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean. Earth Syst. Sci. Data 8, 297–323 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Olsen, A. et al. GLODAPv2.2019 – an update of GLODAPv2. Earth Syst. Sci. Data 11, 1437–1461 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Holbourn, A., Kuhnt, W., Schulz, M., Flores, J.-A. & Andersen, N. Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion. Earth Planet. Sci. Lett. 261, 534–550 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Miller, K. G., Feigenson, M. D., Wright, J. D. & Clement, B. M. Miocene isotope reference section, Deep Sea Drilling Project Site 608: an evaluation of isotope and biostratigraphic resolution. Paleoceanography 6, 33–52 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Sosdian, S. M. & Lear, C. H. Initiation of the Western Pacific Warm Pool at the Middle Miocene Climate Transition? Paleoceanogr. Paleoclimatol. 35, e2020PA003920 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Holbourn, A. et al. Does Antarctic glaciation force migration of the tropical rain belt? Geology 38, 783–786 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sosdian, S. M., Babila, T. L., Greenop, R., Foster, G. L. & Lear, C. H. Ocean carbon storage across the middle Miocene: a new interpretation for the Monterey Event. Nat. Commun. 11, 134 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leutert, T. J., Auderset, A., Martínez-García, A., Modestou, S. & Meckler, A. N. Coupled Southern Ocean cooling and Antarctic ice sheet expansion during the middle Miocene. Nat. Geosci. 13, 634–639 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Boyle, E. A. & Keigwin, L. D. Comparison of Atlantic and Pacific paleochemical records for the last 215,000 years: changes in deep ocean circulation and chemical inventories. Earth Planet. Sci. Lett. 76, 135–150 (1985).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rosenthal, Y., Boyle, E. A. & Labeyrie, L. Last Glacial Maximum paleochemistry and deepwater circulation in the Southern Ocean: evidence from foraminiferal cadmium. Paleoceanography 12, 787–796 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Rosenthal, Y., Field, M. P. & Sherrell, R. M. Precise determination of element/calcium ratios in calcareous samples using sector field inductively coupled plasma mass spectrometry. Anal. Chem. 71, 3248–3253 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Winkelbauer, H. et al. Foraminifera iodine to calcium ratios: approach and cleaning. Geochem. Geophys. Geosyst. 22, e2021GC009811 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fox, L. R., Wade, B. S., Holbourn, A., Leng, M. J. & Bhatia, R. Temperature gradients across the Pacific Ocean during the Middle Miocene. Paleoceanogr. Paleoclimatol. 36, e2020PA003924 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Anand, P., Elderfield, H. & Conte, M. H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanogr. Paleoclimatol. 18, 1050 (2003).

    ADS 

    Google Scholar
     

  • Rosenthal, Y., Bova, S. & Zhou, X. A user guide for choosing planktic foraminiferal Mg/Ca-temperature calibrations. Paleoceanogr. Paleoclimatol. 37, e2022PA004413 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Evans, D. & Müller, W. Deep time foraminifera Mg/Ca paleothermometry: nonlinear correction for secular change in seawater Mg/Ca. Paleoceanogr. Paleoclimatol. 27, PA4205 (2012).

    ADS 

    Google Scholar
     

  • Ren, H. et al. Foraminiferal isotope evidence of reduced nitrogen fixation in the ice age Atlantic Ocean. Science 323, 244–248 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sigman, D. M. et al. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal. Chem. 73, 4145–4153 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Casciotti, K. L., Sigman, D. M., Hastings, M. G. & Bo, J. K. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal. Chem. 74, 4905–4912 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McIlvin, M. R. & Casciotti, K. L. Technical updates to the bacterial method for nitrate isotopic analyses. Anal. Chem. 83, 1850–1856 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weigand, M. A., Foriel, J., Barnett, B., Oleynik, S. & Sigman, D. M. Updates to instrumentation and protocols for isotopic analysis of nitrate by the denitrifier method. Rapid Commun. Mass Spectrom. 30, 1365–1383 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Leichliter, J. N. et al. Nitrogen isotopes in tooth enamel record diet and trophic level enrichment: results from a controlled feeding experiment. Chem. Geol. 563, 120047 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shipboard Scientific Party. Site 845. in Proceedings of the Ocean Drilling Program, Initial Reports Vol. 138 (eds Mayer, L. et al.) 189–263 (Ocean Drilling Program, 1992).

  • Miller, K. G., Wright, J. D. & Fairbanks, R. G. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion. J. Geophys. Res. Solid Earth 96, 6829–6848 (1991).

    Article 

    Google Scholar
     

  • Vincent, E. & Toumarkine, M. Data report: Miocene planktonic foraminifers from the eastern equatorial Pacific. in Proceedings of the Ocean Drilling Program, Scientific Results Vol. 138 (eds Pisias, N. G., Mayer, L. A., Janecek, T. R., Palmer-Julson, A. & van Andel, T. H.) 895–907 (Ocean Drilling Program, 1995).

  • Zhou, X., Thomas, E., Rickaby, R. E. M., Winguth, A. M. E. & Lu, Z. I/Ca evidence for upper ocean deoxygenation during the PETM. Paleoceanography 29, 964–975 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Hardisty, D. S. et al. Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate. Earth Planet. Sci. Lett. 463, 159–170 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • van Raden, U. J., Groeneveld, J., Raitzsch, M. & Kucera, M. Mg/Ca in the planktonic foraminifera Globorotalia inflata and Globigerinoides bulloides from Western Mediterranean plankton tow and core top samples. Mar. Micropaleontol. 78, 101–112 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Stainbank, S. et al. Assessing the impact of diagenesis on foraminiferal geochemistry from a low latitude, shallow-water drift deposit. Earth Planet. Sci. Lett. 545, 116390 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Martinez-Garcia, A. et al. Laboratory assessment of the impact of chemical oxidation, mineral dissolution, and heating on the nitrogen isotopic composition of fossil-bound organic matter. Geochem. Geophys. Geosyst. 23, e2022GC010396 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M. (eds) Geologic Time Scale 2020 Vol. 2 (Elsevier, 2020).

  • Barron, J. A. Planktonic marine diatom record of the past 18 My: appearances and extinctions in the Pacific and Southern Oceans. Diatom Res. 18, 203–224 (2003).

    Article 
    ADS 

    Google Scholar
     

  • National Oceanic and Atmospheric Administration (NOAA), National Environmental Satellite, Data, and Information Service (NESDIS). Geo-polar blended 5 km SST analysis for the full globe (2021).

  • Shevenell, A. E. & Kennett, J. P. in Geophysical Monograph Series Vol. 151 (eds Exon, N. F., Kennett, J. P. & Malone, M. J.) 235–251 (American Geophysical Union, 2004).

  • Shipboard Scientific Party. Site 1171. in Proceedings of the Ocean Drilling Program, Initial Reports (ed. Scroggs, J. M.) 176 (2001).

  • Shevenell, A. E., Kennett, J. P. & Lea, D. W. Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion. Science 305, 1766–1770 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    netbalaban news