Antagonistic circuits mediating infanticide and maternal care in female mice – Nature

0
29


  • Parmigiani, S. & vom Saal, F. Infanticide And Parental Care (Routledge, 2016).

  • Dulac, C., O’Connell, L. A. & Wu, Z. Neural control of maternal and paternal behaviors. Science 345, 765–770 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soroker, V. & Terkel, J. Changes in incidence of infanticidal and parental responses during the reproductive cycle in male and female wild mice Mus musculus. Anim. Behav. 36, 1275–1281 (1988).

    Article 

    Google Scholar
     

  • McCarthy, M. M. & vom Saal, F. S. The influence of reproductive state on infanticide by wild female house mice (Mus musculus). Physiol. Behav. 35, 843–849 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kohl, J., Autry, A. E. & Dulac, C. The neurobiology of parenting: a neural circuit perspective. Bioessays 39, 1–11 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Numan, M. Motivational systems and the neural circuitry of maternal behavior in the rat. Dev. Psychobiol. 49, 12–21 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kohl, J. & Dulac, C. Neural control of parental behaviors. Curr. Opin. Neurobiol. 49, 116–122 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, Z.-X., Li, X.-Y. & Xu, X.-H. Neural circuit mechanisms that underlie parental care. Adv. Exp. Med. Biol. 1284, 49–62 (2020).

  • Numan, M. & Insel, T. R. The Neurobiology of Parental Behavior (Springer, 2003).

  • Kuroda, K. O. & Numan, M. The medial preoptic area and the regulation of parental behavior. Neurosci. Bull. 30, 863–865 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carollo, A., Balagtas, J. P. M., Neoh, M. J. & Esposito, G. A scientometric approach to review the role of the medial preoptic area (MPOA) in parental behavior. Brain Sci. 11, 393 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lukas, D. & Huchard, E. The evolution of infanticide by females in mammals. Philos. Trans. R. Soc. B 374, 20180075 (2019).

    Article 

    Google Scholar
     

  • Palombit, R. A. Infanticide as sexual conflict: coevolution of male strategies and female counterstrategies. Cold Spring Harb. Perspect. Biol. 7, a017640 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jakubowski, M. & Terkel, J. Infanticide and caretaking in non-lactating Mus musculus: influence of genotype, family group and sex. Anim. Behav. 30, 1029–1035 (1982).

    Article 

    Google Scholar
     

  • Svare, B. & Mann, M. Infanticide: genetic, developmental and hormonal influences in mice. Physiol. Behav. 27, 921–927 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gandelman, R. The ontogeny of maternal responsiveness in female Rockland-Swiss albino mice. Horm. Behav. 4, 257–268 (1973).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, Y. C. et al. Medial preoptic area in mice is capable of mediating sexually dimorphic behaviors regardless of gender. Nat. Commun. 9, 279 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang, Y. Y., Yamaguchi, T., Song, S. C., Tritsch, N. X. & Lin, D. A hypothalamic midbrain pathway essential for driving maternal behaviors. Neuron 98, 192–207 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Z., Autry, A. E., Bergan, J. F., Watabe-Uchida, M. & Dulac, C. G. Galanin neurons in the medial preoptic area govern parental behaviour. Nature 509, 325–330 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kohl, J. et al. Functional circuit architecture underlying parental behaviour. Nature 556, 326–331 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsuneoka, Y. et al. Neurotransmitters and neuropeptides in gonadal steroid receptor-expressing cells in medial preoptic area subregions of the male mouse. Sci. Rep. 7, 9809 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. Y. et al. AGRP neurons project to the medial preoptic area and modulate maternal nest-building. J. Neurosci. 39, 456–471 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, G.-W. et al. Medial preoptic area antagonistically mediates stress-induced anxiety and parental behavior. Nat. Neurosci. 24, 516–528 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsuneoka, Y. et al. Distinct preoptic-BST nuclei dissociate paternal and infanticidal behavior in mice. EMBO J. 34, 2652–2670 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Autry, A. E. et al. Urocortin-3 neurons in the mouse perifornical area promote infant-directed neglect and aggression. eLife 10, e64680 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato, K. et al. Amygdalohippocampal area neurons that project to the preoptic area mediate infant-directed attack in male mice. J. Neurosci. 40, 3981–3994 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, P. B. et al. Sexually dimorphic control of parenting behavior by the medial amygdala. Cell 176, 1206–1221 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Numan, M. Medial preoptic area and maternal behavior in the female rat. J. Compar. Physiol. Psychol. 87, 746–759 (1974).

    Article 
    CAS 

    Google Scholar
     

  • Numan, M., Corodimas, K. P., Numan, M. J., Factor, E. M. & Piers, W. D. Axon-sparing lesions of the preoptic region and substantia innominata disrupt maternal behavior in rats. Behav. Neurosci. 102, 381–396 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mann, M. A., Kinsley, C., Broida, J. & Svare, B. Infanticide exhibited by female mice: genetic, developmental and hormonal influences. Physiol. Behav. 30, 697–702 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zingg, B. et al. AAV-mediated anterograde transsynaptic tagging: mapping corticocollicular input-defined neural pathways for defense behaviors. Neuron 93, 33–47 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, A.-X. et al. Specific hypothalamic neurons required for sensing conspecific male cues relevant to inter-male aggression. Neuron 108, 763–774 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stagkourakis, S. et al. A neural network for intermale aggression to establish social hierarchy. Nat. Neurosci. 21, 834–842 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gallo, M. et al. Limited bedding and nesting induces maternal behavior resembling both hypervigilance and abuse. Front. Behav. Neurosci. 13, 167 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nephew, B. C. & Bridges, R. S. Effects of chronic social stress during lactation on maternal behavior and growth in rats. Stress 14, 677–684 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, S. Y. et al. Diverging neural pathways assemble a behavioural state from separable features in anxiety. Nature 496, 219–223 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jennings, J. H. et al. Distinct extended amygdala circuits for divergent motivational states. Nature 496, 224–228 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lebow, M. A. & Chen, A. Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders. Mol. Psychiatry 21, 450–463 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitra, S. W. et al. Immunolocalization of estrogen receptor β in the mouse brain: comparison with estrogen receptor α. Endocrinology 144, 2055–2067 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, H. et al. Scalable control of mounting and attack by Esr1+ neurons in the ventromedial hypothalamus. Nature 509, 627–632 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hashikawa, K. et al. Esr1+ cells in the ventromedial hypothalamus control female aggression. Nat. Neurosci. 20, 1580–1590 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamaguchi, T. et al. Posterior amygdala regulates sexual and aggressive behaviors in male mice. Nat. Neurosci. 23, 1111–1124 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelly, D. A., Varnum, M. M., Krentzel, A. A., Krug, S. & Forger, N. G. Differential control of sex differences in estrogen receptor α in the bed nucleus of the stria terminalis and anteroventral periventricular nucleus. Endocrinology 154, 3836–3846 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, A. Q., Dela Cruz, J. A., Sun, Y., Holmes, T. C. & Xu, X. Genetic cell targeting uncovers specific neuronal types and distinct subregions in the bed nucleus of the stria terminalis. J. Comp. Neurol. 524, 2379–2399 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hrdy, S. B. Infanticide among animals: a review, classification, and examination of the implications for the reproductive strategies of females. Ethol. Sociobiol. 1, 13–40 (1979).

    Article 

    Google Scholar
     

  • Knoedler, J. R. et al. A functional cellular framework for sex and estrous cycle-dependent gene expression and behavior. Cell 185, 654–671 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, B., Karigo, T. & Anderson, D. J. Transformations of neural representations in a social behaviour network. Nature 608, 741–749 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, X. et al. Hyperexcited limbic neurons represent sexual satiety and reduce mating motivation. Science 379, 820–825 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin, L. et al. VMHvllCckar cells dynamically control female sexual behaviors over the reproductive cycle. Neuron 110, 3000–3017 (2022).

  • Wong, L. C. et al. Effective modulation of male aggression through lateral septum to medial hypothalamus projection. Curr. Biol. 26, 593–604 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Falkner, A. L. et al. Hierarchical representations of aggression in a hypothalamic-midbrain circuit. Neuron 106, 637–648 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link