Harnessing a paper-folding mechanism for reconfigurable DNA origami – Nature

0
22


  • Freeland, R., Bilyeu, G., Veal, G., Steiner, M. & Carson, D. Large inflatable deployable antenna flight experiment results. Acta Astronaut. 41, 267–277 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Pesenti, M., Masera, G. & Fiorito, F. Exploration of adaptive origami shading concepts through integrated dynamic simulations. J. Archit. Eng. 24, 04018022 (2018).

  • Lee, D.-Y., Kim, J.-K., Sohn, C.-Y., Heo, J.-M. & Cho, K.-J. High–load capacity origami transformable wheel. Sci. Robot. 6, eabe0201 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Meloni, M. et al. Engineering origami: a comprehensive review of recent applications, design methods, and tools. Adv. Sci. 8, 2000636 (2021).

    Article 

    Google Scholar
     

  • Wu, S. et al. Stretchable origami robotic arm with omnidirectional bending and twisting. Proc. Natl Acad. Sci. USA 118, e2110023118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castro, C. E. et al. A primer to scaffolded DNA origami. Nat. Methods 8, 221–229 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lavella, G. J., Jadhav, A. D. & Maharbiz, M. M. A synthetic chemomechanical machine driven by ligand–receptor bonding. Nano Lett. 12, 4983–4987 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, M. et al. A DNA tweezer-actuated enzyme nanoreactor. Nat. Commun. 4, 2127 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Chen, H. et al. Understanding the mechanical properties of DNA origami tiles and controlling the kinetics of their folding and unfolding reconfiguration. J. Am. Chem. Soc. 136, 6995–7005 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X., Lu, C.-H. & Willner, I. Switchable reconfiguration of nucleic acid nanostructures by stimuli-responsive DNA machines. Acc. Chem. Res. 47, 1673–1680 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, L., Marras, A. E., Su, H.-J. & Castro, C. E. DNA origami compliant nanostructures with tunable mechanical properties. ACS Nano 8, 27–34 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marras, A. E., Zhou, L., Su, H.-J. & Castro, C. E. Programmable motion of DNA origami mechanisms. Proc. Natl Acad. Sci. USA 112, 713–718 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhan, P. et al. Reconfigurable three-dimensional gold nanorod plasmonic nanostructures organized on DNA origami tripod. ACS Nano 11, 1172–1179 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, C., Lee, J. Y. & Kim, D.-N. Polymorphic design of DNA origami structures through mechanical control of modular components. Nat. Commun. 8, 2067 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grossi, G., Dalgaard Ebbesen Jepsen, M., Kjems, J. & Andersen, E. S. Control of enzyme reactions by a reconfigurable DNA nanovault. Nat. Commun. 8, 992 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marras, A. E. et al. Cation-activated avidity for rapid reconfiguration of DNA nanodevices. ACS Nano 12, 9484–9494 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, L., Marras, A. E., Huang, C. M., Castro, C. E. & Su, H. J. Paper origami‐inspired design and actuation of DNA nanomachines with complex motions. Small 14, 1802580 (2018).

    Article 

    Google Scholar
     

  • Selnihhin, D., Sparvath, S. M., Preus, S., Birkedal, V. & Andersen, E. S. Multifluorophore DNA origami beacon as a biosensing platform. ACS Nano 12, 5699–5708 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ijäs, H., Hakaste, I., Shen, B., Kostiainen, M. A. & Linko, V. Reconfigurable DNA origami nanocapsule for pH-controlled encapsulation and display of cargo. ACS Nano 13, 5959–5967 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goetzfried, M. A. et al. Periodic operation of a dynamic DNA origami structure utilizing the hydrophilic–hydrophobic phase‐transition of stimulus‐sensitive polypeptides. Small 15, 1903541 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Jun, H. et al. Autonomously designed free-form 2D DNA origami. Sci. Adv. 5, eaav0655 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103–113 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tikhomirov, G., Petersen, P. & Qian, L. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature 552, 67–71 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wagenbauer, K. F., Sigl, C. & Dietz, H. Gigadalton-scale shape-programmable DNA assemblies. Nature 552, 78–83 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Minev, D., Wintersinger, C. M., Ershova, A. & Shih, W. M. Robust nucleation control via crisscross polymerization of highly coordinated DNA slats. Nat. Commun. 12, 1741 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pumm, A.-K. et al. A DNA origami rotary ratchet motor. Nature 607, 492–498 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sigl, C. et al. Programmable icosahedral shell system for virus trapping. Nat. Mater. 20, 1281–1289 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petersen, P., Tikhomirov, G. & Qian, L. Information-based autonomous reconfiguration in systems of interacting DNA nanostructures. Nat. Commun. 9, 5362 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. Y. et al. Rapid computational analysis of DNA origami assemblies at near-atomic resolution. ACS Nano 15, 1002–1015 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. Y., Kim, M., Lee, C. & Kim, D.-N. Characterizing and harnessing the mechanical properties of short single-stranded DNA in structured assemblies. ACS Nano 15, 20430–20441 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. G., Kim, K. S., Lee, J. Y. & Kim, D.-N. Predicting the free-form shape of structured DNA assemblies from their lattice-based design blueprint. ACS Nano 16, 4289–4297 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, D.-N., Kilchherr, F., Dietz, H. & Bathe, M. Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic Acids Res. 40, 2862–2868 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, C., Kim, K. S., Kim, Y.-J., Lee, J. Y. & Kim, D.-N. Tailoring the mechanical stiffness of DNA nanostructures using engineered defects. ACS Nano 13, 8329–8336 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, C., Kim, Y.-J., Kim, K. S., Lee, J. Y. & Kim, D.-N. Modulating the chemo-mechanical response of structured DNA assemblies through binding molecules. Nucleic Acids Res. 49, 12591–12599 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, Y.-J., Park, J., Lee, J. Y. & Kim, D.-N. Programming ultrasensitive threshold response through chemomechanical instability. Nat. Commun. 12, 5177 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagenbauer, K. F. et al. How we make DNA origami. ChemBioChem 18, 1873–1885 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chandrasekaran, A. R. & Halvorsen, K. DNA-based smart reagent for detecting Alzheimer’s associated MicroRNAs. ACS Sens. 6, 3176–3181 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Z. et al. Triggered dimerization and trimerization of DNA tetrahedra for multiplexed miRNA detection and imaging of cancer cells. Small 17, 2007355 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hariadi, R. F., Yurke, B. & Winfree, E. Thermodynamics and kinetics of DNA nanotube polymerization from single-filament measurements. Chem. Sci. 6, 2252–2267 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zenk, J., Tuntivate, C. & Schulman, R. Kinetics and thermodynamics of Watson–Crick base pairing driven DNA origami dimerization. J. Am. Chem. Soc. 138, 3346–3354 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yurke, B., Turberfield, A. J., Mills, A. P., Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Idili, A., Vallée-Bélisle, A. & Ricci, F. Programmable pH-triggered DNA nanoswitches. J. Am. Chem. Soc. 136, 5836–5839 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Y., Endo, M., Hidaka, K. & Sugiyama, H. Photo-controllable DNA origami nanostructures assembling into predesigned multiorientational patterns. J. Am. Chem. Soc. 134, 20645–20653 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuzyk, A. et al. A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function. Nat. Commun. 7, 10591 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X., Jun, H. & Bathe, M. Programming 2D supramolecular assemblies with wireframe DNA origami. J. Am. Chem. Soc. 144, 4403–4409 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerling, T., Wagenbauer, K. F., Neuner, A. M. & Dietz, H. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science 347, 1446–1452 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Papoulis, A. & Pillai, S. U. Probability, Random Variables, and Stochastic Processes (Tata McGraw-Hill Education, 2002).

  • Douglas, S. M. et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Persat, A., Chambers, R. D. & Santiago, J. G. Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part I: acid–base equilibria and pH buffers. Lab. Chip 9, 2437–2453 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, X., Mochizuki, T. & Asanuma, H. A supra‐photoswitch involving sandwiched DNA base pairs and azobenzenes for light‐driven nanostructures and nanodevices. Small 5, 1761–1768 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, G. et al. Meta-DNA structures. Nat. Chem. 12, 1067–1075 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link