Indirect effects shape species fitness in coevolved mutualistic networks – Nature

0
12


  • Thompson, J. N. The coevolving web of life. Am. Nat. 173, 125–140 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Thompson, J. N. Mutualistic webs of species. Science 312, 372–373 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bascompte, J. & Jordano, P. Plant–animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593 (2007).

    Article 
    MATH 

    Google Scholar
     

  • Bascompte, J. Disentangling the web of life. Science 325, 416–419 (2009).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Guimarães, P. R. Jr, Pires, M. M., Jordano, P., Bascompte, J. & Thompson, J. N. Indirect effects drive coevolution in mutualistic networks. Nature 550, 511–514 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wootton, J. T. The nature and consequences of indirect effects in ecological communities. Annu. Rev. Ecol. Syst. 25, 443–466 (1994).

    Article 

    Google Scholar
     

  • Strauss, S. Y. Indirect effects in community ecology: their definition, study and importance. Trends Ecol. Evol. 6, 206–210 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Darwin, C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life (Murray, 1861).

  • Fisher, R. A. The Genetical Theory of Natural Selection (Clarendon Press, 1930).

  • Reed, D. H. Relationship between population size and fitness. Conserv. Biol. 19, 563–568 (2005).

    Article 

    Google Scholar
     

  • Orr, H. A. Fitness and its role in evolutionary genetics. Nat. Rev. Genet. 10, 531–539 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thompson, J. N. Relentless Evolution (Univ. Chicago Press, 2013).

  • Bronstein, J. L. Mutualism (Oxford Univ. Press, 2015).

  • Bronstein, J. L. Our current understanding of mutualism. Q. Rev. Biol. 69, 31–51 (1994).

    Article 

    Google Scholar
     

  • Bronstein, J. L., Dieckmann, U. & Ferrière, R. in Evolutionary Conservation Biology (eds Ferrière, R. et al.) 305–326 (Cambridge Univ. Press, 2009).

  • Thompson, J. N. The Geographic Mosaic of Coevolution (Univ. Chicago Press, 2005).

  • Nuismer, S. L., Jordano, P. & Bascompte, J. Coevolution and the architecture of mutualistic networks. Evolution 67, 338–354 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Guimarães, P. R. Jr, Jordano, P. & Thompson, J. N. Evolution and coevolution in mutualistic networks. Ecol. Lett. 14, 877–885 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Kauffman, S. A. & Johnsen, S. Coevolution to the edge of chaos: coupled fitness landscapes, poised states, and coevolutionary avalanches. J. Theor. Biol. 149, 467–505 (1991).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lande, R. Natural selection and random genetic drift in phenotypic evolution. Evolution 30, 314–334 (1976).

    Article 
    PubMed 

    Google Scholar
     

  • Santamaría, L. & Rodríguez-Gironés, M. A. Linkage rules for plant–pollinator networks: trait complementarity or exploitation barriers? PLoS Biol. 5, e31 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohr, R. P., Naisbit, R. E., Mazza, C. & Bersier, L.-F. Matchingcentrality decomposition and the forecasting of new links in networks. Proc. R. Soc. B 283, 20152702 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peralta, G. et al. Trait matching and phenological overlap increase the spatio-temporal stability and functionality of plant–pollinator interactions. Ecol. Lett. 23, 1107–1116 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Galen, C. High and dry: drought stress, sex-allocation trade-offs, and selection on flower size in the alpine wildflower Polemonium viscosum (Polemoniaceae). Am. Nat. 156, 72–83 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Irwin, R. E., Adler, L. S. & Brody, A. K. The dual role of floral traits: pollinator attraction and plant defense. Ecology 85, 1503–1511 (2004).

    Article 

    Google Scholar
     

  • Strauss, S. Y. & Whittall, J. B. in Ecology and Evolution of Flowers (eds Harder, L. D. & Barrett, S. C. H.) 120–138 (Oxford Univ. Press, 2006).

  • Galetti, M. et al. Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340, 1086–1090 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshimura, J. & Jansen, V. A. A. Evolution and population dynamics in stochastic environments. Res. Popul. Ecol. 38, 165–182 (1996).

    Article 

    Google Scholar
     

  • Bascompte, J., Possingham, H. & Roughgarden, J. Patchy populations in stochastic environments: critical number of patches for persistence. Am. Nat. 159, 128–137 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Waser, N. M., Chittka, L., Price, M. V., Williams, N. M. & Ollerton, J. Generalization in pollination systems, and why it matters. Ecology 77, 1043–1060 (1996).

    Article 

    Google Scholar
     

  • Levins, R. The effect of random variations of different types on population growth. Proc. Natl Acad. Sci. USA 62, 1061–1065 (1969).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piculell, B. J., Hoeksema, J. D. & Thompson, J. N. Interactions of biotic and abiotic environmental factors in an ectomycorrhizal symbiosis, and the potential for selection mosaics. BMC Biol. 6, 23 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Batstone, R. T., Peters, M. A. E., Simonsen, A. K., Stinchcombe, J. R. & Frederickson, M. E. Environmental variation impacts trait expression and selection in the legume–rhizobium symbiosis. Am. J. Bot. 107, 195–208 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Caruso, C. M., Eisen, K. E., Martin, R. A. & Sletvold, N. A meta-analysis of the agents of selection on floral traits. Evolution 73, 4–14 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Munguía-Rosas, M. A., Ollerton, J., Parra-Tabla, V. & De-Nova, J. A. Meta-analysis of phenotypic selection on flowering phenology suggests that early flowering plants are favoured. Ecol. Lett. 14, 511–521 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Fricke, E. C. & Svenning, J.-C. Accelerating homogenization of the global plant–frugivore meta-network. Nature 585, 74–78 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mackin, C. R., Peña, J. F., Blanco, M. A., Balfour, N. J. & Castellanos, M. C. Rapid evolution of a floral trait following acquisition of novel pollinators. J. Ecol. 109, 2234–2246 (2021).

    Article 

    Google Scholar
     

  • Stuart, Y. E. et al. Rapid evolution of a native species following invasion by a congener. Science 346, 463–466 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Valido, A., Rodríguez-Rodríguez, M. C. & Jordano, P. Honeybees disrupt the structure and functionality of plant–pollinator networks. Sci. Rep. 9, 4711 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aizen, M. A., Morales, C. L. & Morales, J. M. Invasive mutualists erode native pollination webs. PLoS Biol. 6, e31 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Traveset, A. & Richardson, D. M. Mutualistic interactions and biological invasions. Annu. Rev. Ecol. Evol. Syst. 45, 89–113 (2014).

    Article 

    Google Scholar
     

  • Traveset, A. & Richardson, D. M. Biological invasions as disruptors of plant reproductive mutualisms. Trends Ecol. Evol. 21, 208–216 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Merrel, D. J. The Adaptive Seascape: The Mechanism of Evolution (Univ. Minnesota Press, 1994).

  • Nuismer, S. Introduction to Coevolutionary Theory (W. H. Freeman, 2017).

  • Birskis-Barros, I., Freitas, A. V. L. & Guimarães, P. R. Jr. Habitat generalist species constrain the diversity of mimicry rings in heterogeneous habitats. Sci. Rep. 11, 5072 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: a fresh approach to numerical computing. SIAM Rev. 59, 65–98 (2017).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (R Foundation for Statistical Computing, 2022).

  • Cosmo, L. G. Indirect effects shape species fitness in coevolved mutualistic networks (version 1.0.0). https://doi.org/10.5281/zenodo.7945239 (2023).



  • Source link