Life history complementarity and the maintenance of biodiversity – Nature

0
31


  • Cole, L. C. The population consequences of life history phenomena. Q. Rev. Biol. 29, 103–137 (1954).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stearns, S. C. Life-history tactics: a review of the ideas. Q. Rev. Biol. 51, 3–47 (1976).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Calder, W. A. Size, Function, and Life History (Courier Corporation, 1996).

  • Charnov, E. L. & Berrigan, D. Dimensionless numbers and life history evolution: age of maturity versus the adult lifespan. Evol. Ecol. 4, 273–275 (1990).

    Article 

    Google Scholar
     

  • MacArthur, R. & Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101, 377–385 (1967).

    Article 

    Google Scholar
     

  • MacArthur, R. Species packing and competitive equilibrium for many species. Theor. Popul. Biol. 1, 1–11 (1970).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chesson, P. Macarthur’s consumer-resource model. Theor. Popul. Biol. 37, 26–38 (1990).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Chase, J. M. & Leibold, M. A. Ecological Niches (Univ. Chicago Press, 2009).

  • Caswell, H. Community structure: a neutral model analysis. Ecol. Monogr. 46, 327–354 (1976).

    Article 

    Google Scholar
     

  • Hubbell, S. P. Tree dispersion, abundance, and diversity in a tropical dry forest. Science 203, 1299–1309 (1979).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, 2001).

  • Rosindell, J., Hubbell, S. & Etienne, R. The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol. Evol. 26, 340–348 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Hubbell, S. P. et al. Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283, 554–557 (1999).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • O’Dwyer, J. P. & Cornell, S. J. Cross-scale neutral ecology and the maintenance of biodiversity. Scientific Reports 8, 10200 (2018).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Volkov, I., Banavar, J. R., Hubbell, S. P. & Maritan, A. Neutral theory and relative species abundance in ecology. Nature 424, 1035–1037 (2003).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Hubbell, S. P. Neutral theory in community ecology and the hypothesis of functional equivalence. Func. Ecol. 19, 166–172 (2005).

    Article 

    Google Scholar
     

  • Etienne, R. S. & Alonso, D. Neutral community theory: how stochasticity and dispersal-limitation can explain species coexistence. J. Stat. Phys. 128, 485–510 (2007).

    Article 
    MathSciNet 
    MATH 
    ADS 

    Google Scholar
     

  • Rubio, V. E. & Swenson, N. G. Functional groups, determinism and the dynamics of a tropical forest. J. Ecol. 110, 185–196 (2022).

    Article 

    Google Scholar
     

  • O’Dwyer, J. & Chisholm, R. in Encyclopedia of Biodiversity 510–518 (Elsevier, 2013).

  • Fisher, C. K. & Mehta, P. The transition between the niche and neutral regimes in ecology. Proc. Natl Acad. Sci. USA 111, 13111–13116 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • D’Andrea, R., Gibbs, T. & O’Dwyer, J. P. Emergent neutrality in consumer-resource dynamics. PLoS Comput. Biol. 16, e1008102 (2020).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Nee, S. The neutral theory of biodiversity: Do the numbers add up? Funct. Ecol. 19, 173–176 (2005).

    Article 

    Google Scholar
     

  • O’Dwyer, J., Sharpton, T. & Kembel, S. Backbones of evolutionary history test biodiversity theory in microbial communities. Proc. Natl Acad. Sci. USA 112, 8356–8361 (2015).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Chisholm, R. A. et al. Temporal variability of forest communities: empirical estimates of population change in 4000 tree species. Ecol. Lett. 17, 855–865 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Fung, T., O’Dwyer, J. P., Rahman, K. A., Fletcher, C. D. & Chisholm, R. A. Reproducing static and dynamic biodiversity patterns in tropical forests: the critical role of environmental variance. Ecology 97, 1207–1217 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Sæther, B.-E. Pattern of covariation between life-history traits of european birds. Nature 331, 616–617 (1988).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Promislow, D. E. & Harvey, P. H. Living fast and dying young: A comparative analysis of life-history variation among mammals. J. Zool. 220, 417–437 (1990).

    Article 

    Google Scholar
     

  • Charlesworth, B. et al. Evolution in Age-Structured Populations Vol. 2 (Cambridge Univ. Press, 1994).

  • Sæther, B.-E. & Bakke, Ø. Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81, 642–653 (2000).

    Article 

    Google Scholar
     

  • Enquist, B. J., West, G. B., Charnov, E. L. & Brown, J. H. Allometric scaling of production and life-history variation in vascular plants. Nature 401, 907–911 (1999).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Ricklefs, R. E. & Wikelski, M. The physiology/life-history nexus. Trends Ecol. Evol. 17, 462–468 (2002).

    Article 

    Google Scholar
     

  • Lande, R., Engen, S. & Sæther, B.-E. Evolution of stochastic demography with life history tradeoffs in density-dependent age-structured populations. Proc. Natl Acad. Sci. USA 114, 11582–11590 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Purves, D. W. & Turnbull, L. A. Different but equal: the implausible assumption at the heart of neutral theory. J. Anim. Ecol. 79, 1215–1225 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Dwyer, J., Lake, J., Ostling, A., Savage, V. & Green, J. An integrative framework for stochastic, size-structured community assembly. Proc. Natl Acad. Sci. USA 106, 6170–6175 (2009).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Xiao, X., O’Dwyer, J. P. & White, E. P. Comparing process-based and constraint-based approaches for modeling macroecological patterns. Ecology 97, 1228–1238 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • D’Andrea, R. & O’Dwyer, J. P. The impact of species-neutral stage structure on macroecological patterns. Theor. Ecol. 10, 433–442 (2017).

    Article 

    Google Scholar
     

  • Ostling, A. Do fitness-equalizing tradeoffs lead to neutral communities? Theoretical Ecology 5, 181–194 (2012).

    Article 

    Google Scholar
     

  • Zhang, D.-Y. et al. Demographic trade-offs determine species abundance and diversity. J. Plant Ecol. 5, 82–88 (2012).

    Article 

    Google Scholar
     

  • Caswell, H. Matrix Population Models Vol. 1 (Sinauer Sunderland, 2000).

  • Leslie, P. H. On the use of matrices in certain population mathematics. Biometrika 33, 183–212 (1945).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Charlesworth, B. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10, 195–205 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Felsenstein, J. Inbreeding and variance effective numbers in populations with overlapping generations. Genetics 68, 581–97 (1971).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hill, W. G. Effective size of populations with overlapping generations. Theor. Popul. Biol. 3, 278–289 (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caswell, H. Stage, age and individual stochasticity in demography. Oikos 118, 1763–1782 (2009).

    Article 

    Google Scholar
     

  • Snyder, R. E. & Ellner, S. P. Pluck or luck: does trait variation or chance drive variation in lifetime reproductive success? Am. Nat. 191, E90–E107 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Lande, R. & Barrowclough, G. F. Effective population size, genetic variation, and their use in population management. Viable Pop. Conserv. 87, 87–124 (1987).

    Article 

    Google Scholar
     

  • Frankham, R. Effective population size/adult population size ratios in wildlife: a review. Genet. Res. 66, 95–107 (1995).

    Article 

    Google Scholar
     

  • Waples, R. S., Luikart, G., Faulkner, J. R. & Tallmon, D. A. Simple life-history traits explain key effective population size ratios across diverse taxa. Proc. R. Soc. B 280, 20131339 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waples, R. S. Tiny estimates of the Ne/N ratio in marine fishes: Are they real? J. Fish Biol. 89, 2479–2504 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gillespie, J. H. Natural selection for within-generation variance in offspring number. Genetics 76, 601–606 (1974).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gillespie, J. H. Natural selection for within-generation variance in offspring number ii. discrete haploid models. Genetics 81, 403–413 (1975).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Article 

    Google Scholar
     

  • Barabás, G., D’Andrea, R. & Stump, S. M. Chesson’s coexistence theory. Ecol. Monogr. 88, 277–303 (2018).

    Article 

    Google Scholar
     

  • Adler, P. B., Ellner, S. P. & Levine, J. M. Coexistence of perennial plants: an embarrassment of niches. Ecol. Lett. 13, 1019–1029 (2010).

    PubMed 

    Google Scholar
     

  • Bertness, M. D. & Callaway, R. Positive interactions in communities. Trends Ecol. Evol. 9, 191–193 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bascompte, J., Jordano, P. & Olesen, J. M. Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312, 431–433 (2006).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Holland, J. N. & DeAngelis, D. L. A consumer-resource approach to the density-dependent population dynamics of mutualism. Ecology 91, 1286–1295 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Letten, A. D., Ke, P.-J. & Fukami, T. Linking modern coexistence theory and contemporary niche theory. Ecol. Monogr. 87, 161–177 (2017).

    Article 

    Google Scholar
     

  • Bartomeus, I. & Godoy, O. Biotic controls of plant coexistence. J. Ecol. 106, 1767–1772 (2018).

    Article 

    Google Scholar
     

  • Ellner, S. P., Snyder, R. E., Adler, P. B. & Hooker, G. An expanded modern coexistence theory for empirical applications. Ecol. Lett. 22, 3–18 (2019).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Salguero-Gómez, R. et al. The compadre plant matrix database: an open online repository for plant demography. J. Ecol. 103, 202–218 (2015).

    Article 

    Google Scholar
     

  • Salguero-Gómez, R. et al. Fast–slow continuum and reproductive strategies structure plant life-history variation worldwide. Proc. Natl Acad. Sci. USA 113, 230–235 (2016).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Menges, E. S. & Quintana-Ascencio, P. F. Population viability with fire in Eryngium cuneifolium: deciphering a decade of demographic data. Ecol. Monogr. 74, 79–99 (2004).

    Article 

    Google Scholar
     

  • Quintana-Ascencio, P. F., Menges, E. S. & Weekley, C. W. A fire-explicit population viability analysis of Hypericum cumulicola in Florida rosemary scrub. Conserv. Biol. 17, 433–449 (2003).

    Article 

    Google Scholar
     

  • Maliakal Witt, S. Microhabitat Distribution and Demography of Two Florida Scrub Endemic Plants with Comparisons to their Habitat-Generalist Congeners. PhD thesis, Louisiana State Univ. and Agricultural and Mechanical College (2004).

  • Damuth, J. Population density and body size in mammals. Nature 290, 699–700 (1981).

    Article 
    ADS 

    Google Scholar
     

  • Pianka, E. R. On r-and K-selection. Am. Nat. 104, 592–597 (1970).

    Article 

    Google Scholar
     

  • Grime, J. P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111, 1169–1194 (1977).

    Article 

    Google Scholar
     

  • Reznick, D., Bryant, M. J. & Bashey, F. r-and K-selection revisited: the role of population regulation in life-history evolution. Ecology 83, 1509–1520 (2002).

    Article 

    Google Scholar
     

  • Huston, M. & Smith, T. Plant succession: life history and competition. Am. Nat. 130, 168–198 (1987).

    Article 

    Google Scholar
     

  • Iles, D. T., Salguero-Gómez, R., Adler, P. B. & Koons, D. N. Linking transient dynamics and life history to biological invasion success. J. Ecol. 104, 399–408 (2016).

    Article 

    Google Scholar
     

  • Lande, R. Genetics and demography in biological conservation. Science 241, 1455–1460 (1988).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Pywell, R. F. et al. Plant traits as predictors of performance in ecological restoration. J. Appl. Ecol. 40, 65–77 (2003).

    Article 

    Google Scholar
     

  • Kimura, M. & Ohta, T. The age of a neutral mutant persisting in a finite population. Genetics 75, 199–212 (1973).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ewens, W. Concepts of substitutional load in finite populations. Theor. Popul. Biol. 3, 153–161 (1972).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Johnson, S. G. The nlopt nonlinear-optimization package. http://github.com/stevengj/nlopt (2014).

  • Runarsson, T. P. & Yao, X. Search biases in constrained evolutionary optimization. IEEE Trans. Syst. Man Cybernet. C 35, 233–243 (2005).

    Article 

    Google Scholar
     

  • Cipriotti, P. A. & Aguiar, M. R. Direct and indirect effects of grazing constrain shrub encroachment in semi-arid Patagonian steppes. Appl. Veg. Sci. 15, 35–47 (2012).

    Article 

    Google Scholar
     

  • Eckstein, R. L., Danihelka, J. & Otte, A. Variation in life-cycle between three rare and endangered floodplain violets in two regions: implications for population viability and conservation. Biologia 64, 69–80 (2009).

    Article 

    Google Scholar
     

  • Esparza-Olguín, L., Valverde, T. & Mandujano, M. C. Comparative demographic analysis of three Neobuxbaumia species (Cactaceae) with differing degree of rarity. Popul. Ecol. 47, 229–245 (2005).

    Article 

    Google Scholar
     

  • Forbis, T. A. & Doak, D. F. Seedling establishment and life history trade-offs in alpine plants. Am. J. Bot. 91, 1147–1153 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Kouassi, K. I., Barot, S., Gignoux, J. & Bi, I. A. Z. Demography and life history of two rattan species, Eremospatha macrocarpa and Laccosperma secundiflorum, in Cote d’Ivoire. J. Trop. Ecol. 24, 493–503 (2008).

    Article 

    Google Scholar
     

  • Mondragón Chaparro, D. & Ticktin, T. Demographic effects of harvesting epiphytic bromeliads and an alternative approach to collection. Conserv. Biol. 25, 797–807 (2011).

    Article 

    Google Scholar
     

  • Raventós, J., González, E., Mújica, E. & Bonet, A. Transient population dynamics of two epiphytic orchid species after Hurricane Ivan: implications for management. Biotropica 47, 441–448 (2015).

    Article 

    Google Scholar
     

  • Silva, J. F., Trevisan, M. C., Estrada, C. A. & Monasterio, M. Comparative demography of two giant caulescent rosettes (Espeletia timotensis and E. spicata) from the high tropical Andes. Glob. Ecol. Biogeogr. 9, 403–413 (2000).

    Article 

    Google Scholar
     

  • Jops, K. & O’Dwyer, J. P. Model code sample—life history complementarity and the maintenance of biodiversity. https://doi.org/10.5281/zenodo.7596015 (2023).



  • Source link