Home Science Observation of the orbital Hall effect in a light metal Ti – Nature

Observation of the orbital Hall effect in a light metal Ti – Nature

0


  • Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Orbitronics: the intrinsic orbital current in p-doped silicon. Phys. Rev. Lett. 95, 066601 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kontani, H., Tanaka, T., Hirashima, D., Yamada, K. & Inoue, J. Giant orbital Hall effect in transition metals: origin of large spin and anomalous Hall effects. Phys. Rev. Lett. 102, 016601 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Go, D., Jo, D., Kim, C. & Lee, H.-W. Intrinsic spin and orbital Hall effects from orbital texture. Phys. Rev. Lett. 121, 086602 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Kimura, T., Otani, Y., Sato, T., Takahashi, S. & Maekawa, S. Room-temperature reversible spin Hall effect. Phys. Rev. Lett. 98, 156601 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, Z. et al. Magnetization switching driven by current-induced torque from weakly spin–orbit coupled Zr. Phys. Rev. Res. 2, 013127 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lee, D. et al. Orbital torque in magnetic bilayers. Nat. Commun. 12, 6710 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S. et al. Efficient conversion of orbital Hall current to spin current for spin–orbit torque switching. Commun. Phys. 4, 234 (2021).

    Article 

    Google Scholar
     

  • Hayashi, H. et al. Observation of long-range orbital transport and giant orbital torque. Commun. Phys. 6, 32 (2023).

  • Go, D. & Lee, H.-W. Orbital torque: torque generation by orbital current injection. Phys. Rev. Res. 2, 013177 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sunko, V. et al. Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking. Nature 549, 492–496 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Park, S. R., Kim, C. H., Yu, J., Han, J. H. & Kim, C. Orbital-angular-momentum based origin of Rashba-type surface band splitting. Phys. Rev. Lett. 107, 156803 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bhowal, S. & Vignale, G. Orbital Hall effect as an alternative to valley Hall effect in gapped graphene. Phys. Rev. B 103, 195309 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cysne, T. P. et al. Disentangling orbital and valley Hall effects in bilayers of transition metal dichalcogenides. Phys. Rev. Lett. 126, 056601 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L. & Niu, Q. Angular momentum of phonons and the Einstein–de Haas effect. Phys. Rev. Lett. 112, 085503 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Khomskii, D. I. & Streltsov, S. V. Orbital effects in solids: basics, recent progress, and opportunities. Chem. Rev. 121, 2992–3030 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Rückriegel, A. & Duine, R. A. Long-range phonon spin transport in ferromagnet–nonmagnetic insulator heterostructures. Phys. Rev. Lett. 124, 117201 (2020).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Neumann, R. R., Mook, A., Henk, J. & Mertig, I. Orbital magnetic moment of magnons. Phys. Rev. Lett. 125, 117209 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L.-c. et al. Imprinting and driving electronic orbital magnetism using magnons. Commun. Phys. 3, 227 (2020).

    Article 

    Google Scholar
     

  • Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghosh, S. & Grytsiuk, S. in Solid State Physics Vol. 71 (ed. Stamps, R. L.) 1–38 (Elsevier, 2020).

  • Go, D., Jo, D., Lee, H.-W., Kläui, M. & Mokrousov, Y. Orbitronics: orbital currents in solids. Europhys. Lett. 135, 37001 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bhowal, S. & Satpathy, S. Intrinsic orbital moment and prediction of a large orbital Hall effect in two-dimensional transition metal dichalcogenides. Phys. Rev. B 101, 121112 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Phong, V. T. et al. Optically controlled orbitronics on a triangular lattice. Phys. Rev. Lett. 123, 236403 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tokatly, I. Orbital momentum Hall effect in p-doped graphane. Phys. Rev. B 82, 161404 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Ding, S. et al. Harnessing orbital-to-spin conversion of interfacial orbital currents for efficient spin–orbit torques. Phys. Rev. Lett. 125, 177201 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J. et al. Nontrivial torque generation by orbital angular momentum injection in ferromagnetic-metal/Cu/Al2O3 trilayers. Phys. Rev. B 103, L020407 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Haney, P. M., Lee, H.-W., Lee, K.-J., Manchon, A. & Stiles, M. D. Current induced torques and interfacial spin–orbit coupling: semiclassical modeling. Phys. Rev. B 87, 174411 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Manchon, A. et al. Current-induced spin–orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sala, G. & Gambardella, P. Giant orbital Hall effect and orbital-to-spin conversion in 3d, 5d, and 4f metallic heterostructures. Phys. Rev. Res. 4, 033037 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Go, D. et al. Theory of current-induced angular momentum transfer dynamics in spin–orbit coupled systems. Phys. Rev. Res. 2, 033401 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, J., Liu, Y. & Yan, B. in Memorial Volume for Shoucheng Zhang (eds Lian, B. et al.) 353–364 (World Scientific Publishing, 2021).

  • Stamm, C. et al. Magneto-optical detection of the spin Hall effect in Pt and W thin films. Phys. Rev. Lett. 119, 087203 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mak, K. F., Xiao, D. & Shan, J. Light–valley interactions in 2D semiconductors. Nat. Photon. 12, 451–460 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Han, S., Lee, H.-W. & Kim, K.-W. Orbital dynamics in centrosymmetric systems. Phys. Rev. Lett. 128, 176601 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Saitoh, E. et al. Observation of orbital waves as elementary excitations in a solid. Nature 410, 180–183 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chakraborty, J., Kumar, K., Ranjan, R., Chowdhury, S. G. & Singh, S. R. Thickness-dependent fcc–hcp phase transformation in polycrystalline titanium thin films. Acta Mater. 59, 2615–2623 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Marui, Y., Kawaguchi, M. & Hayashi, M. Optical detection of spin–orbit torque and current-induced heating. Appl. Phys. Express 11, 093001 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Fowles, G. R. Introduction to Modern Optics 2nd edn (Dover Publications, 1989).

  • You, C. Y. & Shin, S. C. Derivation of simplified analytic formulae for magneto‐optical Kerr effects. Appl. Phys. Lett. 69, 1315–1317 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Go, D. et al. Toward surface orbitronics: giant orbital magnetism from the orbital Rashba effect at the surface of sp-metals. Sci. Rep. 7, 46742 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salemi, L., Berritta, M., Nandy, A. K. & Oppeneer, P. M. Orbitally dominated Rashba–Edelstein effect in noncentrosymmetric antiferromagnets. Nat. Commun. 10, 5381 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osgood Iii, R., Bader, S., Clemens, B. M., White, R. & Matsuyama, H. Second-order magneto-optic effects in anisotropic thin films. J. Magn. Magn. Mater. 182, 297–323 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Montazeri, M. et al. Magneto-optical investigation of spin–orbit torques in metallic and insulating magnetic heterostructures. Nat. Commun. 6, 8958 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, X. et al. All-optical vector measurement of spin-orbit-induced torques using both polar and quadratic magneto-optic Kerr effects. Appl. Phys. Lett. 109, 122406 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Papaconstantopoulos, D. A. Handbook of the Band Structure of Elemental Solids (Springer, 2015).

  • Shanavas, K., Popović, Z. S. & Satpathy, S. Theoretical model for Rashba spin–orbit interaction in d electrons. Phys. Rev. B 90, 165108 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Tanaka, T. et al. Intrinsic spin Hall effect and orbital Hall effect in 4d and 5d transition metals. Phys. Rev. B 77, 165117 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Jo, D., Go, D. & Lee, H.-W. Gigantic intrinsic orbital Hall effects in weakly spin–orbit coupled metals. Phys. Rev. B 98, 214405 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shi, J., Zhang, P., Xiao, D. & Niu, Q. Proper definition of spin current in spin–orbit coupled systems. Phys. Rev. Lett. 96, 076604 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     



  • Source link

    netbalaban news