Home Science Safe and just Earth system boundaries – Nature

Safe and just Earth system boundaries – Nature

0


  • IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Zenodo https://doi.org/10.5281/zenodo.5657041 (2019).

  • Folke, C. et al. Our future in the Anthropocene biosphere. Ambio 50, 834–869 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).

  • Rockström, J. et al. Identifying a safe and just corridor for people and the planet. Earth’s Future 9, e2020EF001866 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Rockström, J. et al. Stockholm to Stockholm: achieving a safe Earth requires goals that incorporate a just approach. One Earth 4, 1209–1211 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zalasiewicz, J. et al. The Working Group on the Anthropocene: summary of evidence and interim recommendations. Anthropocene 19, 55–60 (2017).

    Article 

    Google Scholar
     

  • Steffen, W. et al. Trajectories of the Earth system in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, C., Kohler, T. A., Lenton, T. M., Svenning, J.-C. & Scheffer, M. Future of the human climate niche. Proc. Natl Acad. Sci. USA 117, 11350–11355 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  • UNEP Global Environment Outlook—GEO-6: Healthy Planet, Healthy People (Cambridge Univ. Press, 2019); https://doi.org/10.1017/9781108627146.

  • Lenton, T. M. et al. Climate tipping points—too risky to bet against. Nature 575, 592–595 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • UNEP Global Environment Outlook—GEO-6: Technical Summary (Cambridge Univ. Press, 2021); https://wedocs.unep.org/20.500.11822/32024.

  • Biermann, F., Dirth, E. & Kalfagianni, A. Planetary justice as a challenge for earth system governance: editorial. Earth System Governance 6, 100085 (2020).

    Article 

    Google Scholar
     

  • Nakicenovic, N., Rockström, J., Gaffney, O. & Zimm, C. Global Commons in the Anthropocene: World Development on a Stable and Resilient Planet. IIASA Working Paper (IIASA, 2016); http://pure.iiasa.ac.at/14003/.

  • Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Armstrong McKay, D. I. et al. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 377, eabn7950 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Burke, A. & Fishel, S. in Non-Human Nature in World Politics: Theory and Practice (eds Pereira, J. C. & Saramago, A.) 33–52 (Springer International Publishing, 2020).

  • Meyer, L. Intergenerational justice. In The Stanford Encyclopedia of Philosophy (ed. Zalta, E. N.) (Stanford, 2021); https://plato.stanford.edu/archives/sum2021/entries/justice-intergenerational/.

  • Blake, M. & Smith, P. T. International distributive justice. In The Stanford Encyclopedia of Philosophy (ed. Zalta, E. N.) (Stanford, 2022); https://plato.stanford.edu/archives/sum2022/entries/international-justice/.

  • Norlock, K. Feminist ethics. In The Stanford Encyclopedia of Philosophy (ed. Zalta, E. N.) (Stanford, 2019); https://plato.stanford.edu/archives/sum2019/entries/feminism-ethics/.

  • Gupta, J. et al. Reconciling safe planetary targets and planetary justice: why should social scientists engage with planetary targets? Earth System Governance 10, 100122 (2021).

    Article 

    Google Scholar
     

  • Gupta, J. et al. Earth system justice needed to identify and live within Earth system boundaries. Nat. Sustain. https://doi.org/10.1038/s41893-023-01064-1 (2023).

    Article 

    Google Scholar
     

  • O’Neill, B. et al. in Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) 2411–2538 (Cambridge Univ. Press, 2022).

  • Gupta, J. & Schmeier, S. Future proofing the principle of no significant harm. Int. Environ. Agreem. 20, 731–747 (2020).

    Article 

    Google Scholar
     

  • Spijkers, O. The no significant harm principle and the human right to water. Int. Environ. Agreem. 20, 699–712 (2020).

    Article 

    Google Scholar
     

  • Rammelt, C. et al. Impacts of meeting minimum access on critical earth systems amidst the Great Inequality. Nat. Sustain. 6, 212–221 (2022).

    Article 

    Google Scholar
     

  • Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Raworth, K. A doughnut for the Anthropocene: humanity’s compass in the 21st century. Lancet Planet Health 1, e48–e49 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • UN GA. Transforming Our World: The 2030 Agenda for Sustainable Development General Assembly resolution 70/1 vol. A/RES/70/1 (United Nations, 2015).

  • van Vuuren, D. P. et al. Defining a sustainable development target space for 2030 and 2050. One Earth 5, 142–156 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Hickel, J. Is it possible to achieve a good life for all within planetary boundaries? Third World Q. 40, 18–35 (2019).

    Article 

    Google Scholar
     

  • O’Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. K. A good life for all within planetary boundaries. Nat. Sustain. 1, 88–95 (2018).

    Article 

    Google Scholar
     

  • Mace, G. M. et al. Approaches to defining a planetary boundary for biodiversity. Glob. Environ. Change 28, 289–297 (2014).

    Article 

    Google Scholar
     

  • Gleeson, T. et al. The water planetary boundary: interrogation and revision. One Earth 2, 223–234 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zipper, S. C. et al. Integrating the water planetary boundary with water management from local to global scales. Earth’s Future 8, e2019EF001377 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heistermann, M. HESS opinions: a planetary boundary on freshwater use is misleading. Hydrol. Earth Syst. Sci. 21, 3455–3461 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Biermann, F. & Kim, R. E. The boundaries of the planetary boundary framework: a critical appraisal of approaches to define a ‘safe operating space’ for humanity. Annu. Rev. Environ. Resour. 45, 497–521 (2020).

    Article 

    Google Scholar
     

  • Wang-Erlandsson, L. et al. A planetary boundary for green water. Nat. Rev. Earth Environ. 3, 380–392 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Rijsberman, F. R. & Swart, R. J. (eds) Targets and Indicators of Climate Change. Report of Working Group II of the Advisory Group on Greenhouse Gases (Stockholm Environmental Institute, 1990).

  • Parmesan, C. et al. in Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) 197–377 (Cambridge Univ. Press, 2022).

  • Lenton, T. M. et al. Quantifying the human cost of global warming. Nat. Sustain. https://doi.org/10.1038/s41893-023-01132-6 (2023).

    Article 

    Google Scholar
     

  • Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fedele, G., Donatti, C. I., Bornacelly, I. & Hole, D. G. Nature-dependent people: mapping human direct use of nature for basic needs across the tropics. Glob. Environ. Change 71, 102368 (2021).

    Article 

    Google Scholar
     

  • Vira, B. & Kontoleon, A. in Biodiversity Conservation and Poverty Alleviation: Exploring the Evidence for a Link (eds Roe, D. et al.) 52–84 (Wiley, 2012).

  • Alves, R. R. N. & Rosa, I. M. L. Biodiversity, traditional medicine and public health: where do they meet? J. Ethnobiol. Ethnomed. 3, 14 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ellis, E. C. & Mehrabi, Z. Half Earth: promises, pitfalls, and prospects of dedicating half of Earth’s land to conservation. Curr. Opin. Environ. Sustain. 38, 22–30 (2019).

    Article 

    Google Scholar
     

  • Garibaldi, L. A. et al. Working landscapes need at least 20% native habitat. Conserv. Lett. 14, e12773 (2020).


    Google Scholar
     

  • Rocha, J. C. Ecosystems are showing symptoms of resilience loss. Environ. Res. Lett. 17, 065013 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Obura, D. O. et al. Integrate biodiversity targets from local to global levels. Science 373, 746–748 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pascual, U. et al. Biodiversity and the challenge of pluralism. Nat. Sustain. 4, 567–572 (2021).

    Article 

    Google Scholar
     

  • Tickner, D. et al. Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. Bioscience 70, 330–342 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. Camb. Philos. Soc. 94, 849–873 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Dodds, W. K., Perkin, J. S. & Gerken, J. E. Human impact on freshwater ecosystem services: a global perspective. Environ. Sci. Technol. 47, 9061–9068 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Funge-Smith, S. & Bennett, A. A fresh look at inland fisheries and their role in food security and livelihoods. Fish Fish 20, 1176–1195 (2019).

    Article 

    Google Scholar
     

  • Poff, N. L. et al. The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshw. Biol. 55, 147–170 (2010).

    Article 

    Google Scholar
     

  • Liu, X. et al. Environmental flow requirements largely reshape global surface water scarcity assessment. Environ. Res. Lett. 16, 104029 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Hoekstra, A. Y., Mekonnen, M. M., Chapagain, A. K., Mathews, R. E. & Richter, B. D. Global monthly water scarcity: blue water footprints versus blue water availability. PLoS ONE 7, e32688 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richter, B. D., Davis, M. M., Apse, C. & Konrad, C. A presumptive standard for environmental flow protection. River Res. Appl. 28, 1312–1321 (2012).

    Article 

    Google Scholar
     

  • Rolls, R. J. & Arthington, A. H. How do low magnitudes of hydrologic alteration impact riverine fish populations and assemblage characteristics? Ecol. Indic. 39, 179–188 (2014).

    Article 

    Google Scholar
     

  • Carlisle, D. M., Wolock, D. M. & Meador, M. R. Alteration of streamflow magnitudes and potential ecological consequences: a multiregional assessment. Front. Ecol. Environ. 9, 264–270 (2010).

    Article 

    Google Scholar
     

  • Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minderhoud, P. S. J., Middelkoop, H., Erkens, G. & Stouthamer, E. Groundwater extraction may drown mega-delta: projections of extraction-induced subsidence and elevation of the Mekong delta for the 21st century. Environ. Res. Commun. 2, 011005 (2020).

    Article 

    Google Scholar
     

  • Kath, J., Boulton, A. J., Harrison, E. T. & Dyer, F. J. A conceptual framework for ecological responses to groundwater regime alteration (FERGRA). Ecohydrol. 11, e2010 (2018).

    Article 

    Google Scholar
     

  • Döll, P., Fritsche, M., Eicker, A. & Müller Schmied, H. Seasonal water storage variations as impacted by water abstractions: comparing the output of a global hydrological model with GRACE and GPS observations. Surv. Geophys. 35, 1311–1331 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl Acad. Sci. USA 109, 9320–9325 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prüss-Ustün, A. et al. Burden of disease from inadequate water, sanitation and hygiene for selected adverse health outcomes: an updated analysis with a focus on low- and middle-income countries. Int. J. Hyg. Environ. Health 222, 765–777 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • UNESCO WWAP The United Nations World Water Development Report 3: Water in a Changing World (UNESCO and Earthscan, 2009); https://unesdoc.unesco.org/ark:/48223/pf0000181993.

  • WHO Guidelines for Drinking-water Quality 4th edn (World Health Organization, 2022); https://www.who.int/publications/i/item/9789240045064.

  • Rockström, J., Lannerstad, M. & Falkenmark, M. Assessing the water challenge of a new green revolution in developing countries. Proc. Natl Acad. Sci. USA 104, 6253–6260 (2007).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aldaya, M. M., Allan, J. A. & Hoekstra, A. Y. Strategic importance of green water in international crop trade. Ecol. Econ. 69, 887–894 (2010).

    Article 

    Google Scholar
     

  • Schulte-Uebbing, L. F., Beusen, A. H. W., Bouwman, A. F. & de Vries, W. From planetary to regional boundaries for agricultural nitrogen pollution. Nature 610, 507–512 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Quantitative assessment of agricultural sustainability reveals divergent priorities among nations. One Earth 4, 1262–1277 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Quantifying nutrient budgets for sustainable nutrient management. Glob. Biogeochem. Cycles 34, e2018GB006060 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cordell, D. & White, S. Life’s bottleneck: sustaining the world’s phosphorus for a food secure future. Annu. Rev. Environ. Resour. 39, 161–188 (2014).

    Article 

    Google Scholar
     

  • Gu, B. et al. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution. Science 374, 758–762 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ward, M. H. et al. Drinking water nitrate and human health: an updated review. Int. J. Environ. Res. Public Health 15, 1557 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tirado, R. & Allsopp, M. Phosphorus in Agriculture: Problems and Solutions. Technical report (review) (Greenpeace, 2012); https://www.greenpeace.to/greenpeace/wp-content/uploads/2012/06/tirado-and-allsopp-2012-phosphorus-in-agriculture-technical-report-02-2012.pdf.

  • Haywood, J. M., Jones, A., Bellouin, N. & Stephenson, D. Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nat. Clim. Change 3, 660–665 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Krishnamohan, K. S. & Bala, G. Sensitivity of tropical monsoon precipitation to the latitude of stratospheric aerosol injections. Clim. Dyn. 59, 151–168 (2022).

    Article 

    Google Scholar
     

  • Liu, F. et al. Global monsoon precipitation responses to large volcanic eruptions. Sci. Rep. 6, 24331 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuo, M., Zhou, T. & Man, W. Hydroclimate responses over global monsoon regions following volcanic eruptions at different latitudes. J. Clim. 32, 4367–4385 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Douville, H. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1055–1210 (Cambridge Univ. Press, 2021).

  • Visioni, D. et al. Seasonally modulated stratospheric aerosol geoengineering alters the climate outcomes. Geophys. Res. Lett. 47, e2020GL088337 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, M., Cao, L., Bala, G. & Duan, L. Climate response to latitudinal and altitudinal distribution of stratospheric sulfate aerosols. J. Geophys. Res. 126, e2021JD035379 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Vogel, A. et al. Uncertainty in aerosol optical depth from modern aerosol‐climate models, reanalyses, and satellite products. J. Geophys. Res. 127, e2021JD035483 (2022).

    Article 
    ADS 

    Google Scholar
     

  • WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide (WHO, 2021); https://apps.who.int/iris/handle/10665/345329.

  • Cohen, A. J. et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389, 1907–1918 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • EPA. Review of the national ambient air quality standards for particulate matter. Environmental Protection Agency. 40 CFR Part 50. Fed. Regis. Rules Regul. 85, 82684–82748 (2020).


    Google Scholar
     

  • European Commission. Air quality standards https://ec.europa.eu/environment/air/quality/standards.htm (2020).

  • Shaddick, G. et al. Data integration for the assessment of population exposure to ambient air pollution for global burden of disease assessment. Environ. Sci. Technol. 52, 9069–9078 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rao, N. D., Kiesewetter, G., Min, J., Pachauri, S. & Wagner, F. Household contributions to and impacts from air pollution in India. Nat. Sustain. 4, 859–867 (2021).

    Article 

    Google Scholar
     

  • Rao, S. et al. Future air pollution in the shared socio-economic pathways. Glob. Environ. Change 42, 346–358 (2017).

    Article 

    Google Scholar
     

  • van Donkelaar, A., Martin, R. V. & Park, R. J. Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing. J. Geophys. Res. 111, D21201 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Gupta, P. et al. Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmos. Environ. 40, 5880–5892 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Persson, L. et al. Outside the safe operating space of the planetary boundary for novel entities. Environ. Sci. Technol. 56, 1510–1521 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naidu, R. et al. Chemical pollution: a growing peril and potential catastrophic risk to humanity. Environ. Int. 156, 106616 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bai, X. et al. How to stop cities and companies causing planetary harm. Nature 609, 463–466 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Companies taking action. Science Based Targets https://sciencebasedtargets.org/companies-taking-action (2022).

  • Technical guidance for step 1: assess and step 2: prioritize. Draft for public comment (September 2022). Science Based Targets Network https://sciencebasedtargetsnetwork.org/wp-content/uploads/2022/09/Technical-Guidance-for-Step-1-Assess-and-Step-2-Prioritize.pdf (2022).

  • Resources for public consultation on technical guidance for companies. Science Based Targets Network https://sciencebasedtargetsnetwork.org/resources/public-consultation-resources/ (2022).

  • Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • de Vries, W., Schulte-Uebbing, L., Kros, H., Voogd, J. C. & Louwagie, G. Spatially explicit boundaries for agricultural nitrogen inputs in the European Union to meet air and water quality targets. Sci. Total Environ. 786, 147283 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Schulte-Uebbing, L. & de Vries, W. Reconciling food production and environmental boundaries for nitrogen in the European Union. Sci. Total Environ. 786, 147427 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Quantification of global and national nitrogen budgets for crop production. Nat. Food 2, 529–540 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Osman, M. B. et al. Globally resolved surface temperatures since the Last Glacial Maximum. Nature 599, 239–244 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaufman, D. et al. Holocene global mean surface temperature, a multi-method reconstruction approach. Sci. Data 7, 201 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biggs, R. et al. in Encyclopedia of Theoretical Ecology (eds Hastings, A. & Gross, L.) 609–617 (Univ. of California Press, 2012).

  • Reisinger, A. et al. The Concept of Risk in the IPCC Sixth Assessment Report: a Summary of Cross-working Group Discussions (IPCC, 2020); https://www.ipcc.ch/site/assets/uploads/2021/02/Risk-guidance-FINAL_15Feb2021.pdf.

  • Mastrandrea, M. D. et al. Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties (IPCC, 2010); https://www.ipcc.ch/site/assets/uploads/2017/08/AR5_Uncertainty_Guidance_Note.pdf.

  • Gampfer, R. Do individuals care about fairness in burden sharing for climate change mitigation? Evidence from a lab experiment. Clim. Change 124, 65–77 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Marotzke, J., Semmann, D. & Milinski, M. The economic interaction between climate change mitigation, climate migration and poverty. Nat. Clim. Change 10, 518–525 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Owusu, K. A., Kulesz, M. M. & Merico, A. Extraction behaviour and income inequalities resulting from a common pool resource exploitation. Sustain. Sci. Pract. Policy 11, 536 (2019).


    Google Scholar
     

  • Liebrand, W. B. G., Jansen, R. W. T. L., Rijken, V. M. & Suhre, C. J. M. Might over morality: social values and the perception of other players in experimental games. J. Exp. Soc. Psychol. 22, 203–215 (1986).

    Article 

    Google Scholar
     

  • IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).

  • Strauss, B. H., Kulp, S. A., Rasmussen, D. J. & Levermann, A. Unprecedented threats to cities from multi-century sea level rise. Environ. Res. Lett. 16, 114015 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1211–1362 (Cambridge Univ. Press, 2021).

  • Rasmussen, D. J. et al. Extreme sea level implications of 1.5 °C, 2.0 °C, and 2.5 °C temperature stabilization targets in the 21st and 22nd centuries. Environ. Res. Lett. 13, 034040 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Levermann, A. et al. The multimillennial sea-level commitment of global warming. Proc. Natl Acad. Sci. USA 110, 13745–13750 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davies-Jones, R. An efficient and accurate method for computing the wet-bulb temperature along pseudoadiabats. Mon. Weather Rev. 136, 2764–2785 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Xu, Z., Han, Y., Tam, C.-Y., Yang, Z.-L. & Fu, C. Bias-corrected CMIP6 global dataset for dynamical downscaling of the historical and future climate (1979–2100). Sci. Data 8, 293 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • CIESIN. Gridded population of the world, version 4 (GPWv4): population count adjusted to match 2015 revision of UN WPP country totals, revision 11. Center for International Earth Science Information Network, Columbia Univ. https://doi.org/10.7927/H4PN93PB (2018).

  • Im, E.-S., Pal, J. S. & Eltahir, E. A. B. Deadly heat waves projected in the densely populated agricultural regions of South Asia. Sci. Adv. 3, e1603322 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaw, R. et al. in Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) 1457–1579 (Cambridge Univ. Press, 2022).

  • Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene–HYDE 3.2. Earth Syst. Monit. 9, 927–953 (2017).

    ADS 

    Google Scholar
     

  • CIESIN-CIDR. Low elevation coastal zone (LECZ) urban-rural population and land area estimates, version 3. Columbia Univ. and CUNY Institute for Demographic Research, City Univ. of New York https://doi.org/10.7927/d1x1-d702 (2021).

  • van Donkelaar, A. et al. Monthly global estimates of fine particulate matter and their uncertainty. Environ. Sci. Technol. 55, 15287–15300 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Beusen, A. H. W., Van Beek, L. P. H., Bouwman, A. F., Mogollón, J. M. & Middelburg, J. J. Coupling global models for hydrology and nutrient loading to simulate nitrogen and phosphorus retention in surface water—description of IMAGE–GNM and analysis of performance. Geosci. Model Dev. 8, 4045–4067 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Beusen, A. H. W. et al. Exploring river nitrogen and phosphorus loading and export to global coastal waters in the shared socio-economic pathways. Glob. Environ. Change 72, 102426 (2022).

    Article 

    Google Scholar
     

  • Mekonnen, M. M. & Hoekstra, A. Y. Global anthropogenic phosphorus loads to freshwater and associated grey water footprints and water pollution levels: a high‐resolution global study. Water Resour. Res. 54, 345–358 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fekete, B. M., Vörösmarty, C. J. & Lammers, R. B. Scaling gridded river networks for macroscale hydrology: development, analysis, and control of error. Water Resour. Res. 37, 1955–1967 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Wisser, D., Fekete, B. M., Vörösmarty, C. J. & Schumann, A. H. Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network Hydrology (GTN-H). Hydrol. Earth Syst. Sci. 14, 1–24 (2010).

    Article 
    ADS 

    Google Scholar
     



  • Source link

    netbalaban news